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Abstract

GQuEST, or Gravity from the Quantum Entanglement of Space-Time, is an ex-
periment with the goal of measuring fluctuations in space time using an ultra-sensitive
tabletop Michelson Interferometer. This experiment requires high precision optics,
including extremely thin high-reflectivity mirrors. This makes the optics extremely
sensitive to small changes in their radius of curvature which can cause a misalignment
in the modes of the light in the system. This can, in part, be mitigated by imaging the
mirrors and matching the modes and by applying pressure to the mirror in a custom
mount. The goal of this project is to develop a process for imaging and correcting the
curvature of the mirror and analyzing how well the modes of different mirrors match.

1 Introduction

Einstein’s theory of general relativity and quantum mechanics both make accurate and well-
tested predictions. However, these theories are generally incompatible. The aim of studying
’quantum gravity’ is to propose descriptions of gravity that are in keeping with our under-
standing of quantum mechanics. While there have been many proposed theories centered
around what the quantum nature of gravity is, such theories are extremely hard to verify
experimentally, due to the scales at which phenomena must be measured. One such theory of
quantum gravity, proposed by Erik Verlinde and Kathryn Zurek, argues that the holographic
principle provides us with a way to quantize spacetime [1]. These fluctuations, referred to
now as VZ fluctuations, could potentially be observed using precise optical techniques, and
measuring the Power Spectral Density (PSD) of these proposed fluctuations which are in
concept observable using tabletop optics. These fluctuations are extremely weak in ampli-
tude, although they are in principle measurable in a realistic experiment. This is one of
the reasons this effect has not been measured, as low amplitudes are harder to detect be-
cause they are below quantum noise. These fluctuations are also stochastic in nature, and
therefore must be described statistically, which is why quantum gravity experiments such as
this use a PSD measurement to observe phase difference by measuring photons at different
frequencies [2].

Figure 1: Michelson Interferometer in GQuEST setup
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GQuEST, or Gravity from the Quantum Entanglement of Space-Time, is an project that is
designed to measure this phase difference by using a Michelson interferometer like LIGO, as
can be seen in Fig. 1. The interferometer splits light from a laser into two separate arms
at the beamsplitter, where they are then reflected by end mirrors and recombine. The light
then moves into the photon counting readout scheme, which is a method that measures
light output by counting single photons rather than using the typical homodyne readout.
This method has yet to be applied to interferometer measurements, and provides some new
advantages to the setup, namely that the interferometer is far more sensitive than it would
be with the homodeyne readout.

This will be a key improvement of GQuEST from similar interferometer experiments used to
study quantum gravity. It would provide some new advantages to the setup, namely that the
interferometer is far more sensitive than it would be with homodyne readout [2]. GQuEST
would not limited by quantum noise because of the photon counting method, it is instead
limited by classical noise, which is much lower in amplitude.

2 Motivation

2.1 Radius of Curvature

For this project, I focused on the end mirrors of the GQuEST Interferometer, which has two,
highly reflective, silicon mirrors. Standard, thicker mirrors would be a dominant source of
classical noise in the interferometer, caused in part to the vibrational modes of the mirrors.
This noise can be reduced to be below coating thermal noise by making the mirrors extremely
thin, around 2 mm. The mirrors have a highly reflective (HR) Bragg reflection coating
applied to the surface which applies a stress to the mirror itself. This in turn increases
wavefront curvature, which is reflected in the radius of the curvature of the mirror itself and
can be described as:

rcurv ≈
1

6

(
Esh

2

σchc(1− vs)

)
(1)

where Es is Young’s modulus of the applied substrate, or the stiffness of the mirror, h is
the thickness of the end mirror, σc is the coating stress, hc is the thickness of the coating,
and vs is the Poisson ratio for silicon [2]. As the wavefront curvature increases so does
the amount of light that leaks out of the interferometer, called contrast defects. This is
because differences in curvature between the two mirrors can lens the light into different
spatial modes that do not fully cancel when the light interferes at the beamsplitter, resulting
in an excess of light in our readout. This effect can be mitigated in part by applying a thick
anti-reflective coating to the back of the mirror, which will partially reduce the curvature
caused by the thickness of the HR coating. Reducing contrast defects can also be done by
adjusting the curvature difference between the two mirrors. This difference can be found by
subtracting the curvature, in diopters, of each of the end mirrors. The goal is such that the
mirrors have the same curvature and therefore produce the same optical mode and have the
same expected amplitude coefficients.
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We can determine the optical modes of light coming from a mirror by calculating the coupling
coefficient of the light. This tells us ’how much’ of the incoming beam is contained in our
outgoing beam. This coefficient is given by solving the overlap integral of the amplitude of
the incoming and outgoing beams. This can be done by the following:

knmn′m′(x, y) =

∫ ∫
u∗
n′m′(x, y)eikϕ(x,y)unm(x, y) dx dy (2)

where k is the wave number, ϕ is the phase information from the wavefront of the beam,
and u is a function for the beam given by:

unm(x, y) =

(
1

2n+m−1n!m!π

)1/2(
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2x

w(z)

)
Hm

(√
2y

w(z)

)
exp

(
−ik

(x2 + y2)

2q(z)

)
(3)

where n and m are integers, w0 is the beam waist, w(z) is the beam width, q is the complex
beam parameter, k is the wave number, x and y are the transverse directions of the wave, z
as the beam axis, and H a Hermite Polynomial or order n or m [3]. HGmn is our notation
for referring to a beam with m and n modes.

By determining the coupling coefficient of the light reflected off of our mirror, which can
be done using wavefront measurement methods discussed in Section 3, we can solve for the
radius of curvature of the mirror. The derivation for this is expanded on in Section 6, and
provides us with the result:

D00 =
−4i

kw2

(
1− 1

k2
00

)
(4)

D02 ≈
4
√
2k02

kw2
(5)

Since we can calculate a different coupling coefficient for each of the different modes, we
can also calculate a different radius of curvature for each of the different modes, hence why
there are multiple equations for curvature. The array of these radius values fully describe
the curvature over different mode configurations.

How much control we have over the mirror in terms of how much we can change the radius
can give us an indication of how well we can match two mirrors in the final GQuEST setup,
or if any changes need to be made. This can provide us with a baseline to test our methods
by since the uncoated mirror can be assumed to be flat. The goal of this project is to see
how much we can change the radius of curvature of the mirror in order to counteract the
eventual curvature of the coated mirrors.
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2.2 End Mirror Mount

While there are many different forms of ’adaptive optics’, for this project, we still need to
maintain a high quality factor of the mirror and be precise in our ability to change the radius
as we can reasonably be. This led to the current design for the end mirror mount, shown
in Fig. 2, that was designed by my mentor Daniel Grass. The design has two metal “half
rings” that hold the silicon mirror in place. Each half ring has two spokes, that are held in
place by a small strip of indium foil. They are clasped by a T shaped holder that we call a
’T’, which are movable clamps that can be seen in Fig. 3. When pressure is applied to these
’T’s by a set of adjustable screws, the spokes of the mirror are moved, which in turn deforms
the mirror and changes the radius of curvature. This then changes the coupling coefficient
of the light, which we can observe in the wavefront.

Figure 2: End Mirror Mount (back view)

We want to have a great deal of control over exactly how we are curving the mirror. This
we can do by accounting for the mode that the wavefront is in. This is done through a
special function know as Zernike polynomials, which are orthogonal on the unit disk [4] and
described in Section 6.

Figure 3: End Mirror Mount in COMSOL
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Figure 4: First 15 Zernike Polynomials

These deformations are helpful to describing how the mirror is being curved. The first three
modes, the piston, y-tilt, and x-tilt, can be changed simply by moving the position of the
mirror and its mount. The next three modes actually require us to change the surface of the
mirror. The astigmatic modes are when j = 3 and when j = 5, and can be identified by the
characteristic cross shapes in Fig. 4. The defocus mode, which takes place when j = 4 has a
kind of circle shape on the disk. All of these shapes can be physically made with the mirror
by applying a certain force with the adjustment screws. Our goal is to see a wavefront that is
similar in appearance to j = 3, j = 4, and j = 5. When the mirror is coated, and the mirror
is curved by this coating, then we can use this control we have over the mirrors to cancel
out the curvature, and have a flat mirror that can be mode matched to the corresponding
mirror in the interferometer in the GQuEST setup.

3 Methods

I used two main methods in order to measure the wavefront of the light reflected off of
the mirror. The goal with these measurements is to obtain an accurate phase map of the
wavefront, so that we can use Eq. (2) to solve for the coupling coefficient of the light incident
on and reflected out of the mirror. This then allows us to solve for the radius of curvature of
the mirror. These wavefront measurement methods are Fizeau interferometers and Shack-
Hartmann Wavefront Sensors.

Fizeau interferometers are able to analyze the interference fringes from the wavefront of the
mirror. Since the spatial separation and intensity of the fringes is related to the shape of the
mirror, we can use this to determine what the surface looks like. For example, a perfectly
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flat mirror would show even spaced straight line fringes, so any curvature or roughness of
the mirror’s surface changes the location and intensity of the predicted fringes. Since the
incident angle, intensity, slope angle, wavelength, distance, and most other parameters of the
device are known, we can reconstruct the surface of the mirror using these fringe patterns
[5]. This can be seen in Fig. 5, and this Fizeau interferometer was used to measure the
wavefronts of the LIGO Test Masses as well.

Figure 5: Fizeau interferometer

Shack-Hartman wavefront sensors are used to measure the shape of a wavefront from incident
light. It consists of an array of microlenses, as can be seen in Fig. 6, usually made of fused
silica, which can be either mounted or unmounted [6]. This array is in front of an image
sensor, which allows us to estimate the wavefront distortions from the light.

Each of the small lenses produces an intensity profile. This intensity is related to the spatial
Fourier transform (since each of the smaller lenses in the array has a discrete intensity). This
intensity is shifted by distortions in the wavefront, so while a planar wavefront will have one
point of intensity at the center of each microlens, a distorted wavefront will shift each of
them, so the wavefront can be reconstructed by analyzing this shift. One disadvantage is
that the resolution is limited by how many microlenses there are and how far apart they are.
The model we are using from Thorlabs has 30 by 30 smaller lenses in this array.

Figure 6: Microlens array
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The wavefront is reconstructed also using Zernike Polynomials, discussed earlier, since the
coefficients of the wavefront can be found which by fitting the local slope of the wavefront
error with Zernike polynomial derivatives. The shift in the lens’ image is proportional to
the mean slope of the wavefront on the lens, which approximates the slope of the wavefront.
This process is elaborated on in Section 6.

The first step I took in this project was to use the Fizeau interfeometer to image the uncoated
silicon mirror without it being in the mirror mount. This would provide us with a baseline
of what the unstressed mirror looked like, and allow us to refine our process of analyzing the
data from the Fizeau interferometer.

Figure 7: Wavefront image of the un-
coated mirror

Figure 8: Wavefront image of the un-
coated mirror rotated 45 degrees

From this wavefront data, I was able to develop a process in python that used the data from
the Fizeau interferometer to calculate the coupling coefficient of the beam from the HG00

mode to the HGmn mode, where m and n describe the outgoing beam. From this, I can
then calculate the radius of curvature of the mirror. I also used this to simulate what the
expected radius of curvature would be for some applied force on the mirror. This was done
using COMSOL, a finite element analysis software. Using the design of the end mirror mount
in this program, I could adjust the simulated force applied on the mirror. I could then use
this simulation to find what the expected coupling coefficients would be for a mirror of that
radius. This gave us an indication of what to expect when I adjusted the mirror itself.

Using the Shack-Hartmann Wavefront Sensor required us to research and purchase the mi-
crolens array as seen in Fig. 6, and then to design and build a setup for using the array.
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Figure 9: Setup for the Shack-Hartman Interferometer

In the design in Fig. 9, we collimate the light out of the fiber optic cable by passing it
through two lenses. Light would then pass through a polarizing beamsplitter, then to a
quarter waveplate, giving it a circular polarization of 45 degrees from the plates axis. Then
it would reflect off of the mirror we are testing, pass through the quarter waveplate again for
a total polarization shift of 90 degrees from the axis and then through the beamsplitter again.
Then the light will pass into the mounted lens array (MLA) and then to the camera. The
wavefront sensor is an MLA with a square grid of smaller lenses that measure the intensity,
which is how the wavefront is reconstructed.

We used this setup to image the flat mirror, in order to compare it to the data we had
already taken with the Fizeau interferometer. After that, we used the same process as
before to evaluate the coupling coefficient and the radius of curvature of the wavefront.
Finally, we imaged the same modes with the Fizeau interferometer again to compare our
results.

4 Results

4.1 Simulation results

Using an expected radius we obtained from COMSOL, we are able to calculate the Zernike
coefficients for what an expected wavefront of a certain mode. Using this data, we can
calculate what the expected coupling coefficient for a certain mode and radius would be.
This is expanded on in Section 6.

From this simulation, we can find which mode the wavefront is most coupled to. This gives
us a rough idea of how to judge how effective our actual mirror is coupling to a certain mode.
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Figure 10: Flat Mirror Simulation

We also evaluated the oblique astigmatic mode (plus shape) shown below.

Figure 11: Oblique Astigmatic Mode Simulation

This mirror shape couples most strongly to the HG11 mode. This means we can expect a
similar result with our actual mirror.

Figure 12: Defocus Mode Simulation

The defocus mode shown above most strongly couples to the HG20 and HG02 modes.
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Figure 13: Vertical Astigmatic Mode Simulation

The vertical astigmatic mode shown above also most strongly couples to the HG02 and HG20

modes.

These simulations provide us with something to compare our actual results against, and
allowed us to test our code pipeline to make sure it works.

4.2 Shack-Hartmann Wavefront Sensor Results

Using the microlens array shown in Fig. 6 and the setup we designed to us it in Fig. 9, we also
imaged the mirror using the Shack-Hartmann Wavefront sensor. As we did with the Fizeau
interferometer, we first imaged the flat mirror to gain a point of reference for taking data.
This image is shown below, where Section 4.2 is the data directly from the CCD camera
behind the microlens array, where the location of the dot’s intensity relative to the center
of each lens is an indication of a change in the wavefront. On the right, Section 4.2 is the
reconstructed wavefront from this data.

Figure 14: Flat mirror Shack-Hartmann
Data

Figure 15: Flat mirror wavefront
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While the data from Fig. 7 and Fig. 8 indicates that we should see an astigmatism, the
wavefront that we see above is stronger than we should expect. We then applied a force
to the mirror to lens the light into the oblique astigmatic mode (plus shape in Fig. 11).
This is shown below in Section 4.2, the data from the Shack-Hartmann, and Section 4.2, the
reconstructed wavefront.

Figure 16: Oblique astigmatic Shack-
Hartmann Data

Figure 17: Oblique astigmatic wavefront

This wavefront looks incredibly similar to the previous, unstressed wavefront, even though
the Zernike polynomials for each wavefront are different. In fact, if we subtract the two
wavefronts, as we do in Fig. 18, we find that the two wavefronts are exactly the same. This
indicates that the Shack-HartmannWavefront Sensor might not be precise enough to measure
the changes in modes. This could also be a problem with our wavefront reconstruction, as
the process uses an approximation to build the wavefront.

Figure 18: Flat wavefront subtracted from curved
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One strategy we tried to rectify this was to zero out the contribution from the tip and the tilt
of the mirror. Manually adjusting this had limited results, since all tip and tilt movements
are coupled on the 5 axis stage, but simply ignoring the tilt components when reconstructing
the wavefront showed some promise. We will be looking into this method further.

4.3 Fizeau interferometer results

Although we were not successful with the Shack-Hartmann Wavefront Sensor, we did use
the Fizeau interferometer again to measure the wavefront, both with the mirror in the end
mirror mount and with a mirror stressed into the different modes. Any stress of the mirror
in the end mirror mount is caused by the half rings that hold it pressing on the mirror, so
the mirror is not completely unstressed. The wavefront confirmed our earlier measurements
that we took with the Fizeau interferometer.

Figure 19: Unstressed wavefront

When the mirror was stressed into the oblique astigmatic mode, the original wavefront looks
very similar to the unstressed case, as seen in Fig. 20. However, when we subtract out the
wavefront of the mirror in the end mirror mount from the stressed one we get a wavefront
that looks very similar to the characteristic ’plus’ shape that we are looking for in Fig. 21.
This subtraction is in effect removing the measurement from how the mirror was already
curved and just showing us the change applied by the end mirror mount.
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Figure 20: Oblique astigmatic mode
Figure 21: Oblique astigmatic mode mi-
nus unstressed wavefront

For the defocus mode, we completed the same process, however, we were not able to apply as
much force to the mirror as we would have liked, without losing focus with the interferometer.
In this case, we were not able to see the characteristic ’O’ shape that we expected, instead
when we see almost a flat surface in Fig. 23. This indicates that we did not successfully
produce the defocus mode with the end mirror mount. This is expected by the simulation
data, as the coupling coefficient to the modes is not as strong as it is for the astigmatic
modes. This means that it would be more difficult to couple to this mode, which we found
in our experiment.

Figure 22: Defocus mode
Figure 23: Defocus mode minus un-
stressed wavefront

We were able to strongly recreate the vertical astigmatic mode shown below in Fig. 24. Not
only does it have the characteristic ’X’ shape we are looking for, this shape looks even clearer
when we subtract out the flat wavefront in Fig. 25. This wavefront measurement requires
the most straightforward movement of the ’T’ joints, as the vertical astigmatic mode only
requires a bend in the spokes instead of twisting them.
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Figure 24: Vertical astigmatic mode
Figure 25: Vertical astigmatic mode mi-
nus unstressed wavefront

4.4 Coupling coefficient and radius of curvature

I used the wavefront data from the Fizeau interferometer to compute the coupling coefficient
and radius of curvature, using the method we elaborated on before, and is done in Section 6.
For all of the data, it is clear that we are most strongly coupled to the HG00 mode. This is
what we expect, because we assume the entire incoming beam is in the HG00 mode, so we
don’t expect the light to coupling very strongly to a different mode because the wavelength
of light is much larger than the curvature of the mirror.

The oblique astigmatic mode most strongly couples to the HG11 mode, as the coupling
coefficient for that mode is larger than the corresponding coupling of the other modes. We
see this in both the simulated oblique astigmatic mode and in the actual data from the Fizeau
interferometer. Each of these modes corresponds to a radius that describes how much the
mirror curves in this mode.

Figure 26: Oblique astigmatic mode coupling and radius

For the defocus mode, we would expect the actual data from the Fizeau interferometer to be
most strongly coupled to the HG20 and HG02 mode. However, all of the observed coupling
coefficients are around the same value, indicating that we did not strongly couple to any one
mode. This is confirmed by looking at Fig. 23, which we see is flat mirror image.
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Figure 27: Defocus mode coupling and radius

For the vertical astigmatic mode, we had the closest match between the simulated and actual
coupling. This, again, is confirmed visually by our data from the Fizeau interferometer,
where the vertical astigmatic mode most closely matches the Z22 mode that we are trying
to emulate. It is visible as well that our coupling coefficient is off by about an order of
magnitude, which is something that we would like to investigate further.

Figure 28: Vertical astigmatic mode coupling and radius

4.5 Computing Loss

As a measure of how well the wavefront matches the lower order modes is measuring the loss.
We define loss as the amount of light that is lensed into modes higher than HG00, HG10,
HG01, HG20, HG02, and HG11. This is light that we cannot control with our wavefront
control methods, and therefore results in extra light in the interferometer, which we want
to avoid. GQuEST has a loss budget of about 100 ppm (in terms of energy). Loss is
calculated by finding the modulus squared of the coupling coefficient for the modes above
and subtracting from one, which gives us the loss into higher order modes. This is given in
Fig. 29.
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Figure 29: Loss in each mode

The loss for each of these is lower than our noise budget for the mirror, which is promising.
Also, the oblique astigmatic mode had the lowest loss, and therefore the most control of all
the different modes we tried.

5 Conclusions and Next Steps

The goal of this project was to be able to map the GQuEST end mirrors for correcting the
wavefront. We were successful in this goal, as the modes produced by the end mirror mount
generally matches the COMSOL and python simulations. This is a positive first step towards
making mirrors that match in modes with low loss.

We showed that we can properly lens into the astigmatic modes, but have difficulty doing
so into the defocus mode. A next step will be to try to lens the wavefront into this mode
again.

We also established that the Shack-Hartmann Sensor is not precise enough to measure
changes in modes. The next steps for this project are to implement a different data analy-
sis process for the Shack-Hartmann sensor to potentially improve its ability to reconstruct
wavefronts. This could include using a zonal wavefront estimation method or some other
algorithm in order to solve for the Zernike polynomials that allow us to recreate the wave-
front.

Presently, we will continue to use and improve the pipeline for analyzing data, as well as
seeing if we can optimize the way we solve for the coupling coefficient and radius. This
will involve using new numerical methods to calculate the coupling for each of the different
modes.

Another future goal will be to reduce the loss into higher order modes. This could be done
by optimizing how much we turn the adjustment screws to lens into the mode. In the future,
we will also be replacing these mirrors in the half ring with spokes and mirrors as one piece.

In addition, future designs will incorporate mirrors in which the spokes are a part of the
mirror, as opposed to using a half ring that holds the silicon mirror. This upgrade will allow
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the mirror to be deformed directly, instead of applying a force to the half ring. This can be
seen in Fig. 30, and it will be incorporated in the next round of testing.

Figure 30: New mirror design

Another future step will of course be coating the mirrors with the high reflective and anti-
reflective coating. More testing with the mirrors will need to be done once the mirrors are
coated, with the specific goal of making the mirrors flat.
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6 Appendix

6.1 Zernike Polynomials

We can define the Zernike polynomial in terms of the radial distance ρ, the azimuthal angle ϕ,
the integer azimuthal degree m (where m = 0 for spherical polynomials, and n is the radial
degree. These can be seen graphed in Fig. 4, from [4], where the radial degree increases
moving down the pyramid and the corresponding azimuthal degree increases going across.
The corresponding function is:

Zm
n (ρ, ϕ) = Rm

n (ρ) cos(mϕ) (6)

for even polynomials and is:

Z−m
n (ρ, ϕ) = Rm

n (ρ) sin(mϕ) (7)

for odd polynomials. The function Rm
n (ρ) is known as the radial polynomial. It can be found

by using the generating function:

Rm
n (ρ) =

n−m
2∑

k=0

(−1)k(n− k)!

k!(n+1
2

− k)!(n−m
2

− k)!
ρn−2k (8)

functions that use integers to differentiate their modes is that we can combine the integers
m and n to be known as another integer j, where:

j =
n(n+ 1) +m

2
(9)

Using this fact, we can reconstruct the wavefront for some set amount of Zernike polynomials.
This also allows us to understand the aberrations and deformations present in the optic under
analysis, which can be seen in the final column below.
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Zm
n Zj Classical name

Z0
0 1 Piston

Z−1
1 2ρ sinϕ Y-tilt
Z1

1 2ρ cosϕ X-tilt

Z−2
2

√
6ρ2 sin 2ϕ oblique astigmatism

Z0
2

√
3(2ρ2 − 1) defocus

Z2
2

√
6ρ2 cos 2ϕ vertical astigmatism

6.2 Calculating the Coefficients of Zernike Polynomials from Radius

Figure 31: Initial conditions for Z values of mirror

Using the initial conditions of the location of the mirror, we can estimate what the coefficients
amn of the Zernike Polynomials are in terms of the radius r, sagitta s, and the radius ρ. The
wavefront Φ(x, y) is given by:

Φ(ρ, ϕ) =
∑

amnZmn(ρ, ϕ)

For the oblique astigmatic mode (m = −2, n = 2), we can say that:

Z−2,2(ρ, ϕ) = a−2,2(
√
6ρ2 sin(2ϕ))

And using the initial conditions above:

Z−2,2(l/2, π/4) = a−2,2

(
√
6

(
l

2

)2

sin(2 · π
4
)

)

s = a−2,2

(√
6

(
l2

2

)
sin(

π

2
)

)

a−2,2 =
s√
6

4

l2
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Which gives us:

Z−2,2(ρ, ϕ) =
4s

l2
(
ρ2 sin(2ϕ)

)
Which is what was used in our simulation in Fig. 11. This formula also holds for Z(0, ϕ) = 0
for any ϕ.

For the defocus mode, which is m = 2, n = 0 we can do much the same:

Z2,0(ρ, ϕ) = a2,0(2ρ
2 − 1)

Z2,0(l/2, π/4) = a2,0

(
2

(
l

2

)2

− 1

)

s = a2,0

((
l2

2

)
− 1

)

a2,0 =
s(

l2

2

)
− 1

Which gives us:

Z2,0(ρ, ϕ) =
s(

l2

2

)
− 1

(2ρ2 − 1)

Which was again used in our simulation. Finally for the vertical astigmatic mode m = n = 2,
we get:

Z2,2(ρ, ϕ) = a2,2(
√
6ρ2 cos(2ϕ))

And using the initial conditions above:

Z2,2(l/2, 0) = a−2,2

(
√
6

(
l

2

)2

cos(2 · 0)

)

s = a2,2

(√
6

(
l2

2

))

a2,2 =
s√
6

4

l2

Which gives us:

Z2,2(ρ, ϕ) =
4s

l2
(
ρ2 cos(2ϕ)

)
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6.3 Zernike Vandermonde Matrix

Analyzing the the Shack-Hartman data requires us to use the properties of Zernike poly-
nomials to create a least squares equation that we can solve. This process is outlined by
[7], which establishes a way to analyze wavefronts from phase derivative measurements like
Hartman sensors, that measure local changes in the mirror distortion. We can say that the
estimate of the wavefront Φ(x, y) is given by:

Φ(x, y) =
I∑

i=1

aiZi(x, y) (10)

Where a is a Zernike coefficient and Zi(x, y) is the Zernike polynomial for a total of i
polynomials that we are fitting. We exclude i = 0, since it is constant. Since we only have
derivative measurements of the wavefront phase, our estimate looks more like:

∂Φ

∂x
=

I∑
i=1

ai
∂Zi(x, y)

∂x
(11)

in the x direction and
∂Φ

∂y
=

I∑
i=1

ai
∂Zi(x, y)

∂y
(12)

in the y direction. This process relies on matrices, and we create a Vandermonde matrix of
the derivatives of zernike polynomials and a matrix of the derivative of the location of the
beam placement. The first vector is P , which represents the values of the local shifts in x
and y for a total number of microlenses k:

P = (x shift 1, x shift 2, .... x shift k, y shift 1, y shift 2....y shift k)t (13)

This can be thought of as the ’shifts’ of each of the microlenses. It is the directional derivative
of the phase, at a particular location in the microlens.

Since our P vector is the directional derivative, we need to take the derivatives of the Zernike
polynomials as well in order to solve the least squares estimation and find the coefficients in
Eq. (10). We can setup a matrix of our derivatives of the polynomials as:

D =


∂Z2(x,y)1

∂x
∂Z2(x,y)2

∂x
... ∂Z2(x,y)1

∂y
... ∂Z2(x,y)k

∂y

... .... ... ...
∂Zi(x,y)1

∂x
∂Zi(x,y)2

∂x
... ∂Zi(x,y)1

∂y
... ∂Zi(x,y)k

∂y

 (14)

Where k is the same in both matrices, meaning we can multiply P and D. The matrix we
are solving for is our coefficients, A:

A = (a1, a2, a3.....ai) (15)
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Once we have these coefficients, we can use Eq. (10) to solve for the wavefront. Using these
matrices together, we can solve the least squares expression.

P = DtA

DP = DDtA

A = (DDt)−1DP

Where t refers to the transpose of the matrix and −1 is the inverse. So the coefficients ai that
we need to solve for are determined by the directional derivatives of the Zernike polynomials
at each of the sampling locations of the microlens.

6.4 Determining the radius of curvature from coupling coefficient

As mentioned in Section 1, we are able to use Eq. (2) to determine the radius of curvature
of the mirror. This process in one dimension is elaborated on in [8], but here we use two.

The equation for a Gaussian beam in two dimensions is:

unm(x, y) =

(
1

2n+m−1n!m!π

)1/2(
1

w0

)(
q0
q(z)

)(
q0q

∗(z)

q∗0q(z)

)n+m/2

Hn

(√
2x

w(z)

)
Hm

(√
2y

w(z)

)
exp

(
−ik

(x2 + y2)

2R

)
exp

(
−(x2 + y2)

w2

)
(16)

The equation for the beam in the HG00 mode is:

u00(x, y) =

(
2

π

)1/2(
1

w0

)
H0

(√
2x

w(z)

)
H0

(√
2y

w(z)

)
exp

(
−ik

(x2 + y2)

2R

)
exp

(
−(x2 + y2)

w2

)
(17)

where we normalize to remove the Gouy phase terms. This is similar for the HG02 mode:

u02(x, y) =

(
1

4π

)1/2(
1

w0

)
H0

(√
2x

w(z)

)
H2

(√
2y

w(z)

)
exp

(
−ik

(x2 + y2)

2R

)
exp

(
−(x2 + y2)

w2

)
(18)

k0000(x, y) =

(
2

π

)(
1

w2
0

)∫ ∫
eikDx2/2e−2x/w2

e−2y/w2

dx dy (19)

and likewise for the HG02 mode:

k0002(x, y) =

(
1

2

)1/2(
1

w2
0π

)∫ ∫
H2

(√
2y

w(z)

)
eikDx2/2e−2x2/w2

e−2y2/w2

dx dy (20)
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We can make substitutions that will reduce some of the constants we have, namely that:

x′ =

√
2x

w

and that

y′ =

√
2y

w

Which gives us that:

k0000(x
′, y′) =

1

π

∫ ∫
exp

[
ikDw2x′2

4

]
e−x′2

e−y′2 dx′ dy′ (21)

for the HG00 to HG00 mode, and that:

k0002(x
′, y′) =

1√
8π

∫ ∫
H2(y

′) exp

[
ikDw2x′2

4

]
e−x′2

e−y′2 dx′ dy′ (22)

for the HG00 to HG02 mode.

Using Gaussian integrals and Hermite polynomials we can solve the above equations.

H2(x) = 4x2 − 2 (23)

and ∫ ∞

−∞
e−αx2

x2ndx =

√
π

α

(2n− 1)!!

2αn
(24)

And let us also make the substitution:

a =
kDw2

4

α = 1− ia

Where α can be plugged in to the formula above.

Which gives us:

k0000(x
′, y′) =

√
kDw2

4

(1− ikDw2

4
)3/2

(25)

k0002(x
′, y′) =

1√
2

kDw2

4

(1− ikDw2

4
)3/2

(26)
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